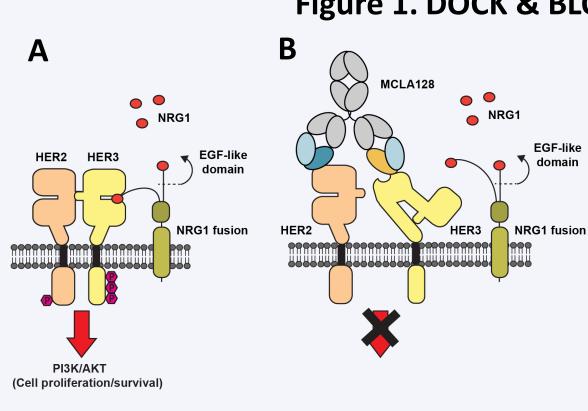


Clinical activity of MCLA-128 (zenocutuzumab), trastuzumab and vinorelbine in HER2-amplified metastatic breast cancer patients (MBC) who had progressed on anti-HER2 antibody drug conjugates (ADCs)


EP Hamilton¹, T Petit², B Pistilli³, A Goncalves⁴, AA Ferreira⁵, F Dalenc⁶, F Cardoso⁷, MM Mita⁸, VO Dezentjé⁹, L Manso¹⁰, SL Graff¹¹, FC Bidard¹², PG Aftimos¹³,

¹Sarah Cannon Research Institute /Tennessee Oncology, Nashville, TN, USA; ²Paul Strauss Cancer Center/University of Strasbourg, Strasbourg, France; ³Gustave Roussy, Villejuif, France; ⁴Institut Paoli-Calmettes, Marseille, France; ⁵Centro Hospitalar do Porto, Portugal; ⁶Institut Claudius Regaud, IUCT-Oncopole, CRCT, Inserm, Toulouse, France; ⁷Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal; ⁸Cedars-Sinai Comprehensive Cancer Center, Los Angeles, CA, USA; ⁹Antoni van Leeuwenhoek, Amsterdam, Netherlands; ¹⁰Hospital 12 de Octubre, Madrid, Spain; ¹¹Sarah Cannon Cancer Institute HCA Midwest Health, Overland Park, KS, USA; ¹²Institut Curie, Saint Cloud, France; ¹³Institut Jules Bordet, Brussels, Belgium; ¹⁴Vall d'Hebron University Hospital/Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁵Merus NV, Utrecht, Netherlands; ¹⁶Centre Léon Bérard, Lyon, France

BACKGROUND

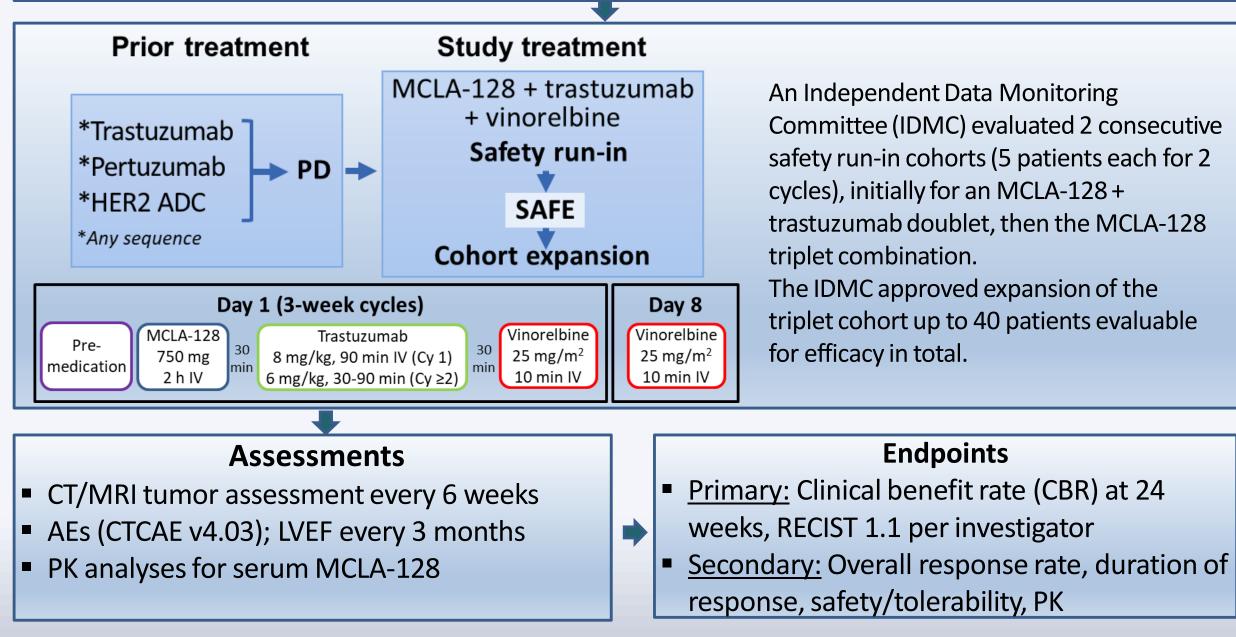
MCLA-128 (zenocutuzumab) is a bispecific humanized full-length IgG1 antibody that binds the transmembrane receptor tyrosine kinase human epidermal growth factor receptors 2 and 3 (HER2 and HER3).

MCLA-128 acts via two independent mechanisms of action: 1) inhibition of HER2:HER3 signaling and 2) elimination of tumor cells via enhanced antibodydependent cell-mediated cytotoxicity (ADCC).

Figure 1. DOCK & BLOCK[®] mechanism action

A) Ligands (such as NRG1) bind to HER3 with high affinity and promote HER2/HER3 limerization and downstream signaling B) MCLA-128 inhibits the HER3-ligand interaction; one arm of the antibody binds the HER2 receptor, and at a different epitope to trastuzumab. This optimally positions the anti-HER3 arm to block the ligand/receptor interaction, preventing HER2/HER3 dimerization and PI3K/AKT/ mTOR pathway activation.

HER3 overexpression and/or HER3 ligand upregulation are important drivers in breast cancer progression associated with trastuzumab resistance.²


MCLA-128 inhibited proliferation in HER2-amplified breast cancer cell lines in vitro and *in vivo*, and showed synergy with trastuzumab.¹ In the first-in-human phase 1/2 study, consistent antitumor activity was observed with single agent MCLA-128 in heavily pretreated HER2-amplified breast cancer patients progressing on anti-HER2 therapies.³

The current open-label phase 2 study was designed to explore the efficacy of the triplet combination of MCLA-128 plus trastuzumab and vinorelbine in MBC.

STUDY DESIGN

Population

- Metastatic or locally advanced breast cancer with HER2 overexpression by IHC 3+ or IHC 2+ with FISH amplification.
- Up to 5 lines of anti-HER2 therapy (metastatic setting with progression on the most recent line, per RECIST v1.1).
- Prior trastuzumab, pertuzumab and an HER2 ADC.

PATIENT POPULATION

A total of 39 patients were treated with the MCLA-128 triplet combination, and 12 of them were ongoing at the time of the efficacy cut-off of 31 March 2020. The 39 treated patients had received a median of 5 cycles [range 1-22].

	N=39	
Age (years), median [range]	57 [29-84]	
ECOG PS (0/1), N (%)	21 (54%) / 18 (46%)	
Prior therapies		
N therapies (chemotherapy, anti-HER2, hormonal),	5 [2-8]	
median [range]		
N anti-HER2 lines (metastatic setting), median [range]	3 [1-5]	
Prior pertuzumab, N (%)	39 (100%)	
Prior T-DM1, N (%)	39 (100%)	
N metastatic sites*, median [range]	3 [1-5]	
Lymph nodes	22 (56%)	
Bone	21 (54%)	
Lung	20 (51%)	
Liver	13 (33%)	
Breast	12 (31%)	
Brain	8 (21%)	

Table 1. Demographics and disease characteristics

* Sites present in >20% of the cohort.

SAFETY

At the safety data cut-off of 14 November 2019, the 28 patients treated with the triplet regimen had received a median of 5 cycles [range 1-17].

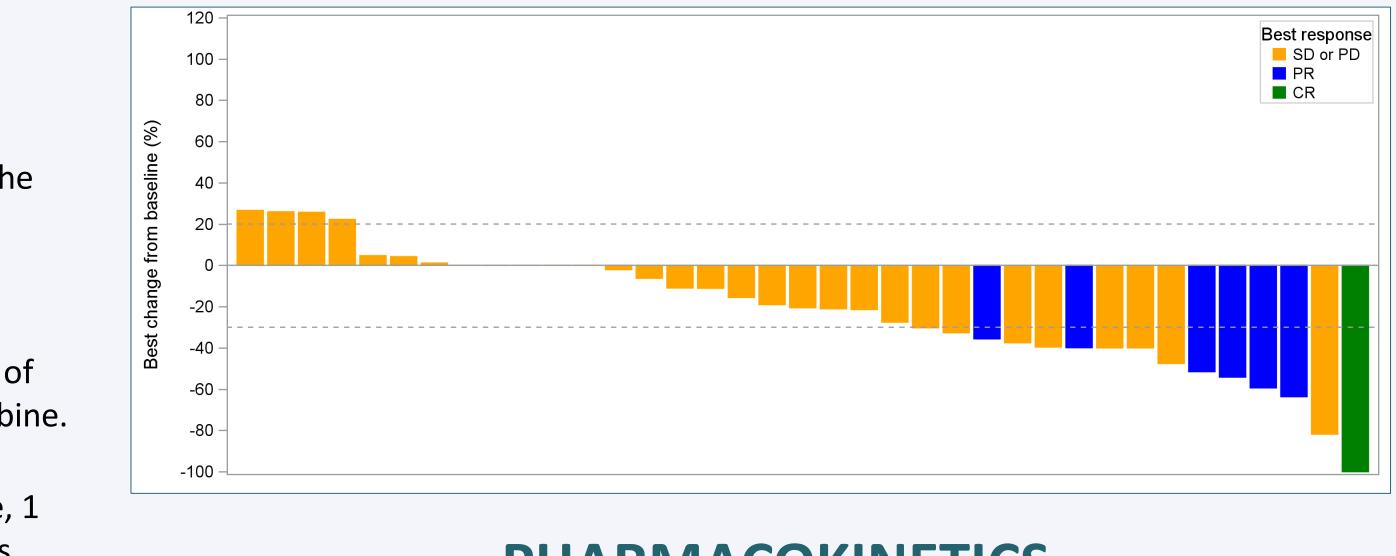
Table 2. Treatment- related AEs in >5% patients and all grade ≥3 events (N=28)

	All	Grade
	grades	3-4
N patients ≥1 related AE	25 (89%)	15 (54%)
Diarrhea	17 (61%)	1 (4%)
Neutropenia	17 (61%)	13 (46%)
Asthenia	9 (32%)	0
Nausea	8 (29%)	0
Fatigue	4 (14%)	0
Abdominal pain	3 (11%)	0
Constipation	3 (11%)	0
Vomiting	3 (11%)	0
Dysgeusia	2 (7%)	0
Dyspnoea	2 (7%)	0
Mucosal inflammation	2 (7%)	0
Myalgia	2 (7%)	0
Pyrexia	2 (7%)	0
Febrile neutropenia	1 (4%)	1 (4%)
Peripheral motor	1 (4%)	1 (4%)
neuropathy		

- > All grade 3-4 neutropenia (46% of patients) was related to vinorelbine.
- > 3 of 15 evaluable patients had transient grade 2 LVEF decrease, 1 was clinically significant but was asymptomatic.
- Infusion-related reactions (grouped) term for AEs associated with infusion) were reported in 18% of patients.
- > 2 patients discontinued treatment due to AEs related to vinorelbine, including 1 patient who developed fatal sepsis*.
- MCLA-128 dose interruptions occurred in 14% of patients.

*This 46-yo patient with bone, brain, liver, lung and LN metastases, progressed on 5 lines of therapy, and had elevated WBC/ANC at baseline. She developed sepsis and G4 neutropenia (related to vinorelbine) on day 13, and died 3 days later.

S Escrivá-de-Romani¹⁴, N Afonso⁵, E Wasserman¹⁵, K Bol¹⁵, V Stalbovskaya¹⁵, A Vliet¹⁵, T Bachelot¹⁶


ANTITUMOR ACTIVITY

- Antitumor activity (RECIST v1.1) was evaluated in 37 evaluable patients with locally confirmed HER2 amplification (3+ IHC or 2+ IHC confirmed by FISH), at the efficacy cut-off of 31 March 2020.
 - The CBR (CR + PR + [SD at 24 weeks]) was 35.1% [90%CI 22.2-50.0].
 - > 1 patient had a CR lasting 19.3 weeks, 6 patients had PR (lasting from 5.3+ to 12.3+ weeks, and 22 had SD (lasting from 5.9+ to 59.1+ weeks; Table 3, Fig. 2 and 3). Among patients with best response of SD, 5 patients had unconfirmed PR, 2 of which are ongoing.

Table 3. CBR, ORR, and BOR, Investigator assessed (RECIST v1.1)

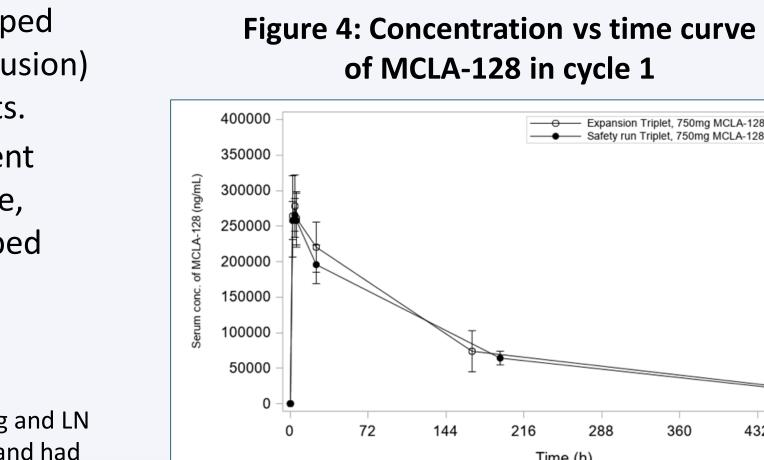
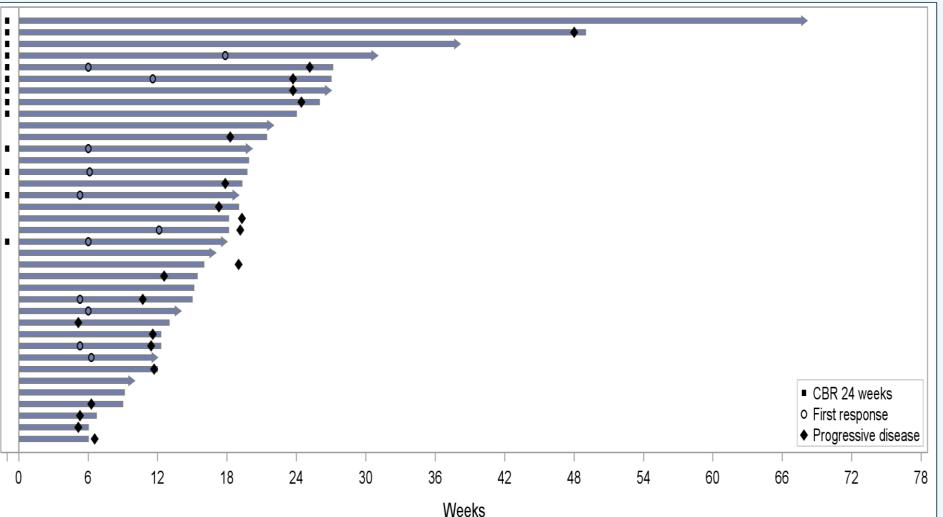

	N=37
Clinical benefit rate at 24 weeks, N (%) [90%CI]	13 (35.1%) [22.2-50.0]
Overall response rate, N (%) [90%CI]	7 (18.9%) [9.2-32.6]
Best overall response (confirmed)	
Complete response	1 (2.7%)
Partial response	6 (16.2%)
Stable disease	22 (59.5%)
Disease progression	8 (21.6%)

Figure 3: Waterfall plot of best percent change from baseline in target lesions in patients with measurable disease (N=37)

Expansion Triplet, 750mg MCLA-128, cycle 1, n=22
 Safety run Triplet, 750mg MCLA-128, cycle 1, n=5

Time (h)



PHARMACOKINETICS

- PK data from 27 evaluable patients were assessed by noncompartmental analysis.
- \blacktriangleright Mean C_{max} was 294 µg/mL; AUC_{∞} was 49980 μg·h/mL; Vss was 2.6 L; CL was 16.1 mL/h ; t½ was 117 h.
- \geq At the mean trough level (16 µg/mL), predicted receptor occupancies for HER2 and HER3 are >90%, suggesting relevant pharmacological activity for the entire 3-week dosing interval
- MCLA-128 PK was similar to single agent PK analyses.⁴

Figure 2: Plot of duration of exposure (weeks), onset of response, and patients with clinical benefit (N=37)

Arrows indicate patients with ongoing study treatment

CONCLUSIONS

- The MCLA-128 (zenocutuzumab) triplet combination is active in heavily pretreated HER2+/amplified MBC patients who have progressed on T-DM1, with 35% of patients achieving clinically meaningful benefit at 6 months.
- > The most common severe AE reported with the triplet therapy was neutropenia considered related to vinorelbine, with few patients discontinuing due to AEs.
- > The PK profile of MCLA-128 administered in combination with trastuzumab and vinorelbine was similar to that of single agent MCLA-128.

References

- 1. Geuijen et al. *Cancer Cell.* 2018; 33(5):922-36
- 2. Lyu et al. Acta Pharm Sin B. 2018; 8(4):503-10
- 3. Alsina et al. *J Clin Onc.* ASCO 2017; 35 (15 Suppl): 2522
- 4. De Vries Schultink et al. *Clinical Pharmacokinet*. 2020; doi: 10.1007/s40262-020-00858-2

Contacts

Ernesto Wasserman (EU) e.wasserman@merus.nl Study funded by Merus N.V. <u>enquiries@merus.nl</u>

ASCO Annual Meeting, May 29-June 2, 2020 (Virtual Meeting). Due to the COVID-19 pandemic, not all data were source verified.